
1

Resource Selection Using Execution and Queue Wait Time
Predictions

Warren Smith
Parkson Wong

Computer Sciences Corporation
NASA Ames Research Center

Moffett Field, CA 94035

{ wwsmi t h, par kson} @nas. nasa. gov

NAS Technical Report Number: NAS-02-003

July 2002

Abstract

Computational grids provide users with many possible places to execute their applications. We
wish to help users select where to run their applications by providing predictions of the execution
times of applications on space shared parallel computers and predictions of when scheduling
systems for such parallel computers will start applications. Our predictions are based on
instance based learning techniques and simulations of scheduling algorithms. We find that our
execution time prediction techniques have an average error of 37 percent of the execution times
for trace data recorded from SGI Origins at NASA Ames Research Center and that this error is
67 percent lower than the error of user estimates. We also find that the error when predicting
how long applications will wait in scheduling queues is 95 percent of mean queue wait times
when using our execution time predictions and this is 57 percent lower than if we use user
execution time estimates.

1. Introduction
The existence of computational grids allows users to easily execute their applications on a variety
of different computer systems. The obvious question users have each time they wish to run an
application is which computer system should they use? Many factors go into making this
decision: The computer systems that the user has access to, the user’s remaining allocations on
these systems, the cost of using different systems, the location of data sets for the experiment,
how long the application will execute on different computers, when the application will start
executing, and so on. In this work, we address the problems of predicting how long an application
will execute on different computer systems and predicting when scheduling systems for such
computers will start an application. With this information, we can calculate when an application
will complete executing and we can use these predictions to suggest which computer system to
use for an application.

The exact problems we address are predicting how long parallel applications will execute on
space shared parallel computers and predicting how long these applications will wait in
scheduling queues before they are given access to resources. We predict the execution time of
applications using an historical database and instance-based learning techniques. Each data point
in the database is one application execution, or job, that has run in the past. When an execution
time estimate needs to be calculated, instance-based learning techniques find historical jobs that
are similar to the job being estimated, and derive a prediction from those historical jobs.

2

We find that our execution time prediction technique has an average error of 37 percent of the
average execution times of six months of jobs submitted to three SGI Origins located at the NAS
division at the NASA Ames Research Center. We also compared the performance of our
prediction technique to three other techniques that have been developed. We find that our
technique currently has a 7 percent lower error than the best of these three techniques for jobs
executed on four supercomputers at three different centers.

Our approach to predicting when a job will execute on a parallel computer is to predict the
execution times of all of the jobs running and waiting to run and then simulate how the scheduler
for a parallel computer will schedule the waiting jobs. This simulation gives us an estimated start
time for each job that is waiting to execute. If we predict the start time of every job in one of our
NASA Ames traces as it is submitted, we find that the average error of this approach is 95 percent
of the average scheduling queue wait time when using First-Come First-Served scheduling but
this is 57 percent better than if we use user execution time estimates instead of our execution time
predictions.

2. Execution Time Prediction
We predict the execution time of applications using instance based learning techniques that are
also called locally weighted learning techniques [2, 10]. In this type of technique, a database of
experiences, called an experience base, is maintained and used to make predictions. Each
experience consists of input and output features. Input features describe the conditions under
which an experience was observed and the output features describe what happened under those
conditions. Each feature typically consists of a name and a value where the value is of a simple
type such as integer, floating point number, or string. When a prediction is to be performed a
query point consisting of input features is presented to the experience base. The data points in the
experience base are examined to determine how relevant they are to the query. Relevance is
determined using the distance between an experience and the query.

There are a variety of distance functions that can be used [13] and we have chosen to use the
Heterogeneous Euclidean Overlap Metric. This distance function can be used on features that are
linear (numbers) or nominal (strings). We require support for nominal values because important
features such as the names of executables, users, and queues are nominal. The distance between
experience x and experience y is defined as:

() ()2
,, �=

f
f yxdyxD

Where f is a certain feature and ()yxd f , is the per-feature distance. This is very similar to the

Euclidean distance, except that to support nominal values, the following per-feature distance is
used:

() ()
()�

�

�
�

�

=

yxdiffrn

fyxoverlap

yx

yxd

f

f

ff

f

,_

else nominal, is if ,,

else unknown, is or if 1,

,

With the following definitions:

()
�
�
� =

=
otherwise 1,

 if 0,
,

ff
f

yx
yxoverlap

ff

ff

f

yx
diffrn

minmax
_

−

−
=

3

The per-feature distance between two nominal values is 0 if they are the same and 1 otherwise.
For linear values, the distance is their difference scaled by the range of values for feature f in the
experience base. This approximately scales the distance to be between 0 and 1. As a further
refinement, we perform feature scaling to stretch the experience space and have it be more
important that certain features are similar than others. To accomplish this, we add feature
weights, fw , to our distance function:

() ()2' ,, �=
f

ff yxdwyxD

Once we know the distance between experiences and a query point, the next question to be
addressed is how we calculate estimates for the output features of the query point. For linear
output features, such as execution time, our approach is to use a distance-weighted average of the
output features of the experiences to form an estimate. We use kernel regression to form estimates
and following kernel function to form the estimate E for output feature f of a query point q:

()
()() ()

()()�

�
=

e

e
f

f eqDK

eVeqDK

qE
,

,

where K is the kernel function, D is the distance function described previously, e is an experience
in the experience base, and ()eV f is the value for feature f of experience e. The kernel function is

used to weight the values of the features in the experience base based on distance. The kernel
function should approach a constant value as the distance goes to 0 and should approach 0 as the
distance goes to infinity. This results in experiences closer to the query point having a larger
contribution to what the estimate will be. There are a wide variety of kernel functions that can be
used. We have chosen to use a simple Gaussian function. Further, we have included a kernel
weight so that we can compact or stretch the kernel to give lower or higher weights to
experiences that are farther away. The resulting kernel function is:

()
2

�
�

�
�
�

�−
= k

d

edK

In the previous discussion, we have described the kernel width and feature weight parameters that
need to be selected. Two other parameters we need values for are the maximum experience base
size and the number of nearest neighbors (experiences) to use when making an estimate.
Specifying the number of nearest neighbors to use allows us to decrease the amount of time it
takes to calculate an estimate, but we do not want this to adversely impact estimation
performance. Our approach to determine the best values for these parameters is to perform a
genetic algorithm search [7] to try different values and attempt to minimize the prediction error.

In our approach, a scheduling job can be an experience or a query. When a job finishes executing,
it becomes an experience that is inserted into the experience base. This experience consists of
input features such as the user who submitted the job, the application that was executed, the
number of CPUs requested, and so on. The execution time of the job is the only output feature of
the experience. When a user wants a prediction for how long a job will execute, the job is turned
into a query that contains the input features just described. An estimate for the execution time
output feature of the query is made using the techniques we have described above.

4

2.1. Per formance
We evaluate the performance of our execution time prediction technique using trace data
recorded from three SGI Origins located at the NASA Ames Research Center. The traces were
recorded during 2001 from the system lomax, that had 496 CPUs available to users, steger that
had 248 CPUs available, and hopper that had 60 CPUs available. For each job, the relevant
information in the traces is the user who submitted the job, the name of the job, the number of
CPUs requested, the amount of wall clock time the CPUs were requested for, the amount of wall
clock time actually used, and when the job was submitted.

To find the best parameters for the instance based learning techniques, we search over traces from
May and June of 2001. In all cases, we initialized our experience base with the jobs that
completed in May. For steger and hopper, we predict all of the jobs that were submitted in June
and inserted all of the jobs that finished in June. We use the accuracy of these predictions to
evaluate the parameters selected. Lomax had a large number of jobs submitted in June so we only
used the first week of data from June and evaluated the parameters using the accuracy of the
predictions in this week of data. The best parameters we found are shown in Table 1. The two
obvious trends are that the number of nearest neighbors is relatively small and the feature weight
for the number of CPUs is relatively high.

Table 1. The best instance based learning parameters found by our genetic algorithm searches.

Workload Parameter
Lomax Steger Hopper

Nearest neighbors 25 8 7
Experience base size 1200 1161 8486

Kernel width 12.0 36.5 18.0
Job name weight 65.7 83.1 31.4
User name weight 4.9 57.4 99.2

Number of CPUs weight 67.0 77.7 79.6
Requested time weight 66.0 17.6 101.7

Current time weight 54.0 74.1 39.9

After we find the parameters to use for the instance based learning techniques, we evaluate the
accuracy of these configurations using trace data from July through December of 2001. We use
this approach to accurately reflect how searches would be performed and used in reality. Table 2
shows the accuracy of our predictions along with the accuracy of user estimates and the mean run
times of the applications in the workloads. The table shows the mean error of our predictions is
between 36 and 39 percent of the mean run time while the error of the user estimates is between
87 and 149 percent of the mean run time. One fact to note about the user estimates are that users
are encouraged to over estimate their execution time because their applications are terminated if
they use more time than they estimate.

Table 2. Execution time prediction error on traces recorded during the last 6 months of 2001.

System Mean Error
(minutes)

Mean Error of User Estimate
(minutes)

Mean Run Time
(minutes)

lomax 36.27 86.00 98.80
steger 22.45 61.31 63.04
hopper 22.16 84.56 56.91

5

2.2. Previous Wor k
There have been several efforts to attempt to predict the execution time of serial and parallel
applications. There have been many efforts to predict the execution time of serial applications on
loaded computer systems [3, 4, 8, 14]. Kapadia used instance based learning techniques, the same
class of techniques we use, to also predict serial applications on loaded computer systems [9].
Another effort estimated the performance of components of distributed applications [11]. Several
researchers, including one of the authors, have addressed the problem of predicting the execution
time of parallel applications on space shared parallel computers by categorizing completed
applications and calculating a prediction from the completed applications in the category the
application to predict falls in [5, 6, 12].

In [12] it was shown that the prediction technique developed by Smith has lower prediction error
than the approaches of Downey and Gibbons. Table 3 shows a comparison of Smith’s technique
and our technique using trace data from 3 months of data from IBM SP that was at Argonne
National Laboratory during 1996, 12 months of data from the IBM SP that was at the Cornell
Theory Center in 1996, and two 12 month traces from the Intel Paragon that was at the San Diego
Supercomputing Center in 1995 and 1996. The table shows that at the current time, our instance
based learning technique has 7 percent lower prediction error than the approach of Smith.

Table 3. A comparison of our execution time prediction technique to those of Smith.

Workload Our Mean
Error (minutes)

Mean Error for
Smith (minutes)

Mean Error of User
Estimate (minutes)

Mean Run
Time (minutes)

ANL 41.52 38.48 104.35 97.08
CTC 105.71 106.73 222.71 182.49

SDSC95 50.81 59.65 N/A 108.16
SDSC96 59.24 74.56 N/A 166.85

3. Star t Time Prediction
Our approach to predicting when applications submitted to scheduling systems will begin
executing is relatively simple: we perform a simulation of the scheduling algorithm which results
in estimated start times for each of the applications waiting in the queue. This simulation is
performed using predictions of the run times of the applications because the actual run times are
not known.

We evaluate the performance of this technique using six months of trace data from July through
December of 2001 recorded from the SGI Origins lomax, steger, and hopper. When using our
prediction techniques, we first load the execution experiences from June of 2001 into the
experience base and then simulate the following six months of data. We use the execution time
prediction configuration that we found using our searches of Section 2.1. So far, we have only
had time to evaluate this approach using the First-Come First-Served scheduling algorithm and
the trace data from hopper. We will evaluate other scheduling algorithms, such as backfill, using
trace data from lomax, steger, and hopper for the final version of this paper.

Table 4 shows the prediction error of our technique when our run time predictions are used and
when the user estimates are used. We do not show that when the exact execution times of the
applications are known, we can exactly predict how long each application will wait in the queue.
The data shows that if we use the estimates of run times made by users, the error is 222 percent of

6

the mean wait time. If our run time estimates are used, the error is only 95 percent of the mean
wait time. This is an improvement of 57 percent. We expect to reduce our start time prediction
error for the final version of this paper by optimizing our instance based learning parameters for
the execution time predictions made here instead of the ones made in Section 2.1.

Table 4. Start time prediction error for trace data from the last six months of data in 2001 and
First-Come First-Served scheduling.

Workload Mean Error using User
Run Time Estimate

(minutes)

Mean Error using
Predicted Run Time

(minutes)

Mean Wait
Time

 (minutes)
Hopper 124.48 53.09 56.03

4. Implementation
We have implemented a prototype service to provide predictions using our techniques. This
service can be used to provide execution time predictions, start time predictions, completion time
predictions (start time prediction plus the execution time prediction), and suggestions of which
machine to use. The suggested machine is the one that will complete an application earliest. We
have deployed this prototype service for use in the SGI Origin cluster at Ames that consists of the
machines lomax, steger, and hopper. These systems are all scheduled using PBS[1] and the
architecture of this service is shown in Figure 1.

The prediction service is executing on a system at Ames and can be accessed from client
command line programs on remote computer systems. The command line programs allow users to
ask for the predictions and suggestions described above. These programs can be run on jobs
already submitted to the PBS schedulers or on PBS scripts that are about to be submitted. To
accomplish this, the system has been programmed to be able to parse PBS scripts to pull out job
information, to monitor the jobs that exist in PBS scheduling systems, and to simulate the
scheduling algorithms used on our Origins. We have just begun to evaluate this implementation
and do not have performance data to present at this time.

Pr ediction Client

Command
Line

Programs

PBS Script
Parser

Prediction
Client

Interface

Pr edict ion Server

PBS Monitor

Prediction

Service
Interface

Experience Base

Execution Time Predictor

PBS Scheduling Simulator

Start and Completion Time Predictor

PBS Monitor

Figure 1. Architecture of our prototype prediction service.

5. Conclusions and Future Work
This paper presents a technique to predict the execution times of parallel applications when run
on space shared parallel computers and a technique to predict how long such applications will

7

wait in scheduling queues before they are allocated resources. These predictions allow us to
predict the completion time of applications that is a very useful piece of information for users that
are trying to select a computer system in a computational grid.

We find that our execution time prediction technique has an average error of 37 percent of the
average execution times on trace data recorded from three Origins at NASA Ames Research
Center. We also find that the average start time prediction error 95 percent of the average queue
wait time when using First-Come First-Served scheduling but this is 57 percent better than if we
use user execution time estimates instead of our execution time predictions.

For the final version of this paper, we will perform more extensive searches to improve our
execution time prediction accuracy and perform more analysis of our data. In the future we will
also continue to improve the performance of our instance based learning techniques. In addition
to investigating more advanced instance based learning techniques, we will examine other
improvements such as allowing users to specify application-specific features. We will also
modify the design of the prediction service presented in Section 4 so that it will operate in a full
computational grid, not just at a single site.

References
[1] "The Portable Batch System," http://www.pbspro.com.
[2] C. Atkeson, A. Moore, and S. Schaal, "Locally Weighted Learning," Artificial

Intelligence Review, vol. 11, pp. 11-73, 1997.
[3] M. Devarakonda and R. Iyer, "Predictability of Process Resource Usage: A

Measurement-Based Study on UNIX," IEEE Transactions on Software Engineering, vol.
15, pp. 1579-1586, 1989.

[4] P. Dinda, "Online Prediction of the Running Time of Tasks." In Proceedings of the The
10th IEEE International Symposium on High Performance Distributed Computing, 2001.

[5] A. Downey, "Predicting Queue Times on Space-Sharing Parallel Computers." In
Proceedings of the 11th International Parallel Processing Symposium, 1997.

[6] R. Gibbons, "A Historical Application Profiler for Use by Parallel Schedulers," Lecture
Notes on Computer Science, vol. 1297, pp. 58-75, 1997.

[7] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning:
Addison-Wesley, 1989.

[8] M. Iverson, F. Ozguner, and L. Potter, "Statistical Prediction of Task Execution Times
Through Analytical Benchmarking for Scheduling in a Heterogeneous Environment." In
Proceedings of the IPPS/SPDP'99 Heterogeneous Computing Workshop, 1999.

[9] N. Kapadia, J. Fortes, and C. Brodley, "Predictive Application Performance Modeling in
a Computational Grid Environment." In Proceedings of the 8th IEEE International
Symposium on High Performance Distributed Computing, 1999.

[10] J. Schneider and A. Moore, "A Locally Weighted Learning Tutorial using Vizier 1.0,"
Robitics Institute, Carnegie Mellon University CMU-RI-TR-00-18, Febuary 2000.

[11] J. Schopf and F. Berman, "Performance Prediction in Production Environments." In
Proceedings of the 12th International Parallel Processing Symposium and the 9th
Symposium on Parallel and Distributed Processing, 1998.

[12] W. Smith, I. Foster, and V. Taylor, "Predicting Application Run Times Using Historical
Information," Lecture Notes on Computer Science, vol. 1459, pp. 122-142, 1998.

[13] D. R. Wilson and T. R. Martinez, "Improved Heterogeneous Distance Functions,"
Journal of Artificial Intelligence Research, vol. 6, pp. 1-34, 1997.

[14] R. Wolski, N. Spring, and J. Hayes, "Predicting the CPU Availability of Time-Shared
Unix Systems." In Proceedings of the 8th IEEE International Symposium on High
Performance Distributed Computing, 1999.

